Elastohydrodynamic lubrication analysis of a functionally graded layered bearing surface, with particular reference to 'cushion form bearings' for artificial knee joints

2003 
AbstractElastohydrodynamic lubrication of a functionally graded layered (FGL) bearing surface, whose elastic modulus increases with depth from the bearing surface, was investigated in this study. The finite difference method was employed to solve the Reynolds equation, simultaneously with the elasticity equation of the bearing surface, under circular point contacts. The finite element method was adopted to solve the elasticity equation for the FGL bearing surface. The displacement coefficients thus obtained were used to calculate the elastic deformation of the bearing surface, required for the elastohydrodynamic lubrication analysis. Good agreement of the predicted film thickness and pressure distribution was obtained, between the present method and a previous study for a single layered bearing surface with a uniform elastic modulus. The general numerical methodology was then applied to an FGL bearing surface with both linear and exponential variations in elastic modulus, with particular reference to the ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    7
    Citations
    NaN
    KQI
    []