language-icon Old Web
English
Sign In

Dynamic Routing Networks

2021 
The deployment of deep neural networks in real-world applications is mostly restricted by their high inference costs. Extensive efforts have been made to improve the accuracy with expert-designed or algorithm-searched architectures. However, the incremental improvement is typically achieved with increasingly more expensive models that only a small portion of input instances really need. Inference with a static architecture that processes all input instances via the same transformation would thus incur unnecessary computational costs. Therefore, customizing the model capacity in an instance-aware manner is much needed for higher inference efficiency. In this paper, we propose Dynamic Routing Networks (DRNets), which support efficient instance-aware inference by routing the input instance to only necessary transformation branches selected from a candidate set of branches for each connection between transformation nodes. The branch selection is dynamically determined via the corresponding branch importance weights, which are first generated from lightweight hyper-networks (RouterNets) and then recalibrated with Gumbel-Softmax before the selection. Extensive experiments show that DRNets can reduce a substantial amount of parameter size and FLOPs during inference with prediction performance comparable to state-of-the-art architectures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    6
    Citations
    NaN
    KQI
    []