KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction

2019 
Abstract H2O2 is an important chemical widely used in paper, textile, water treatment and other fields, while the current industrial anthraquinone pathway is not sustainable. Herein, a highly efficient electrocatalyst, reduced graphene oxide (rGO-KOH), applied for electrochemical H2O2 production was obtained by treating graphene oxide (GO) with KOH aqueous solution. Compared to KBH4-treated reduced graphene oxide (rGO-KBH4) made by KBH4 reduction method, rGO-KOH has more ether bonds (C–O–C) on the surface and a larger electrochemically active surface area. Benefiting from these advantages, rGO-KOH exhibits enhanced selectivity (∼100%) and mass activity for the oxygen reduction reaction through a two-electron pathway (ORR-2e) than rGO-KBH4. Meanwhile, rGO-KOH also shows the excellent durablity for (ORR-2e) in alkaline media. Thus, rGO-KOH may be an ideal electrocatalyst for H2O2 electroproduction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    27
    Citations
    NaN
    KQI
    []