Renal fibrosis in diabetic and aortic-constricted hypertensive rats

2001 
To assess if the renal damage observed in rats with diabetes and hypertension is due to hemodynamic or metabolic changes, a progressive aortic constriction between the two renal arteries has been done in streptozotocin-induced diabetic rats (constriction + diabetes group) and in nondiabetic rats (constriction group). This model allows us to study two kidneys subjected to different perfusion pressure (PP) in the same metabolic environment. One-month-old rats (100–120 g body wt) were subjected to the aortic constriction procedure. Three months after constriction, glomerular filtration rate and renal plasma flow were similar in both kidneys of the two groups. PP was greater in the kidney placed over the ligature [constriction high-pressure kidney (CH) or constriction + diabetic high-pressure kidney (DH)] than in the one placed below the ligature [constriction low pressure (CL) or constriction + diabetic low pressure (DL)]. Proteinuria was higher in the CH than in the CL kidneys (512 ± 61 vs. 361 ± 38 μg/30 min, respectively) and much higher in the DH kidney (770 ± 106 μg/30 min). Renal fibrosis was measured in tissue sections stained with Syrius red using a computer-assisted image analysis system. DH and DL kidneys showed higher corpuscular cross-sectional and capillary tuft areas than the CH and CL ones. The DH kidney showed slight mesangial expansion and thickening of the capillary walls, which were more pronounced in the former. Most renal corpuscles from CH and DH groups were nearly normal in morphology appearance, and only in some instances a slight increment in mesangium was observed. Transforming growth factor-β1 (TGF-β1) immunostaining revealed that DH kidneys showed the highest glomerular expression. We concluded that 1 ) diabetic animals develop glomerular but not interstitial fibrosis to a greater extent than nondiabetic animals and that this lesion principally occurs in the hypertensive kidney (DH), and 2 ) increased TGF-β expression is associated with diabetic renal damage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    12
    Citations
    NaN
    KQI
    []