One-dimensional exciton luminescence induced by extended defects in nonpolar GaN/(Al,Ga)N quantum wells

2011 
In this study, we present the optical properties of nonpolar GaN/(Al,Ga)N single quantum wells (QWs) grown on either a- or m-plane GaN templates for Al contents set below 15%. In order to reduce the density of extended defects, the templates have been processed using the epitaxial lateral overgrowth technique. As expected for polarization-free heterostructures, the larger the QW width for a given Al content, the narrower the QW emission line. In structures with an Al content set to 5 or 10%, we also observe emission from excitons bound to the intersection of I1-type basal plane stacking faults (BSFs) with the QW. Similarly to what is seen in bulk material, the temperature dependence of BSF-bound QW exciton luminescence reveals intra-BSF localization. A qualitative model evidences the large spatial extension of the wavefunction of these BSF-bound QW excitons, making them extremely sensitive to potential fluctuations located in and away from BSF. Finally, polarization-dependent measurements show a strong emission anisotropy for BSF-bound QW excitons, which is related to their one-dimensional character and that confirms that the intersection between a BSF and a GaN/(Al,Ga)N QW can be described as a quantum wire.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    14
    Citations
    NaN
    KQI
    []