Optimized Near-Zero Quantization Method for Flexible Memristor Based Neural Network

2018 
Due to controllable conductance and non-volatility, flexible memristors are regarded as a key enabler for building artificial neural network (ANN)-based learning algorithms in flexible and wearable systems. However, the existing flexible memristors are suffering from limited number of conductance values, issues limiting large-scale integration, and insufficient accuracy that cannot support accurate computation of ANN. In this paper, solutions are proposed for the three major challenges of the flexible memristor; the feasibility of a three-layer fully connected neural network on MNIST and a 13-layer convolutional neural network (CNN) on CIFAR-10 using the flexible memristor based on single-walled carbon nanotubes network/polymer composite and hydrophilic Al 2 O 3 dielectric are studied. The evaluation result shows that in the fully connected neural network system, it is able to recognize MNIST with an accuracy above 90% after 4-bit quantization, 52.05% decrease in interconnection numbers in the circuit and up to 40% random error introduced, and in the CNN on CIFAR-10, the system can retain an accuracy above 86% with less than 4% accuracy loss after 5-bit quantization, 59.34% decrease in interconnection numbers in the circuit and up to 40% random error injected.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    3
    Citations
    NaN
    KQI
    []