Back to the Lithium Plateau with the [Fe/H] < −6 Star J0023+0307*

2019 
We present an analysis of the Ultraviolet and Visual Echelle Spectrograph (UVES) high-resolution spectroscopic observations at the 8.2 m Very Large Telescope of J0023+0307, a main-sequence extremely iron-poor dwarf star. We are unable to detect iron lines in the spectrum but derive [Fe/H] < −6.1 from the Ca ii resonance lines assuming [Ca/Fe] ≥ 0.40. The chemical abundance pattern of J0023+0307, with very low [Fe/Mg] and [Ca/Mg] abundance ratios but relatively high absolute Mg and Si abundances, suggests J0023+0307 is a second generation star formed from a molecular cloud polluted by only one supernova in which the fallback mechanism played a role. We measure a carbon abundance of A(C) = 6.2 that places J0023+0307 on the low band in the A(C)–[Fe/H] diagram, suggesting no contamination from a binary companion. This star is also unique having a lithium abundance A(Li) = 2.02 ± 0.08, close to the level of the lithium plateau, in contrast with lower Li determinations or upper limits in all other extremely iron-poor stars. The upper envelope of the lithium abundances in unevolved stars spanning more than three orders of magnitude in metallicity (−6 < [Fe/H] < −2.5) defines a nearly constant value. We argue that it is unlikely that such uniformity is the result of depletion processes in stars from a significantly higher initial Li abundance, but suggests instead a lower primordial production, pointing to new physics such as decaying massive particles, varying fundamental constants, or nuclear resonances, that could have affected the primordial 7Li production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    33
    Citations
    NaN
    KQI
    []