Existence of conformal symplectic foliations on closed manifolds
2021
We consider the existence of symplectic and conformal symplectic codimension-one foliations on closed manifolds of dimension at least 5. Our main theorem, based on a recent result by Bertelson-Meigniez, states that in dimension at least 7 any almost contact structure is homotopic to a conformal symplectic foliation. In dimension 5 we construct explicit conformal symplectic foliations on every closed, simply-connected, almost contact manifold, as well as honest symplectic foliations on a large subset of them. Lastly, via round-connected sums, we obtain, on closed manifolds, examples of conformal symplectic foliations which admit a linear deformation to contact structures.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
28
References
0
Citations
NaN
KQI