Existence of conformal symplectic foliations on closed manifolds

2021 
We consider the existence of symplectic and conformal symplectic codimension-one foliations on closed manifolds of dimension at least 5. Our main theorem, based on a recent result by Bertelson-Meigniez, states that in dimension at least 7 any almost contact structure is homotopic to a conformal symplectic foliation. In dimension 5 we construct explicit conformal symplectic foliations on every closed, simply-connected, almost contact manifold, as well as honest symplectic foliations on a large subset of them. Lastly, via round-connected sums, we obtain, on closed manifolds, examples of conformal symplectic foliations which admit a linear deformation to contact structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []