The Effect of Electrical Stress on the New Top Gate N-type Depletion Mode Polycrystalline Thin Film Transistors Fabricated by Alternating Magnetic Field Enhanced Rapid Thermal Annealing

2008 
We have fabricated the new top gate depletion mode n-type alternating magnetic field enhanced rapid thermal annealing (AMFERTA) polycrystalline silicon (poly-Si) thin film transistors (TFTs), which show the excellent electrical characteristics and superior stability compared with hydrogenated amorphous silicon (a-Si:H) TFTs and excimer laser crystallized (ELC) low temperature polycrystalline silicon (LTPS) TFTs. The fabricated AMFERTA poly-Si TFTs were not degraded under hot-carrier stress, and highly biased vertical field stress. The considerably large threshold voltage shift (ΔVTH) and trap state density reducing were occurred when the gate bias and drain bias were both large enough. The dominant mechanism of instability in the fabricated depletion mode AMFERTA poly-Si TFTs may be due to carrier induced donor-like defects reduction within the channel layer, especially near the drain junction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []