Squeezed vacuum used to accelerate the search for a weak classical signal
2019
Many experiments that interrogate fundamental theories require detectors whose sensitivities are limited by the laws of quantum mechanics. In cavity-based searches for axionic dark matter, vacuum fluctuations in the two quadratures of the cavity electromagnetic field limit the sensitivity to an axion-induced field. In an apparatus designed to partially mimic existing axion detectors, we demonstrate experimentally that such quantum limits can be overcome through the use of squeezed states. By preparing a microwave cavity in a squeezed state and measuring just the squeezed quadrature, we enhance the spectral scan rate by a factor of 2.12±0.08. This enhancement is in excellent quantitative agreement with a theoretical model accounting for both imperfect squeezing and measurement.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
41
Citations
NaN
KQI