Inverse magnetic hysteresis of the Josephson supercurrent: Study of the magnetic properties of thin niobium/permalloy ( Fe 20 Ni 80 ) interfaces

2021 
We propose a picture for the magnetic properties of superconductor/ferromagnet (S/F) heterostructures based on Nb and permalloy $(\mathrm{Py}:{\mathrm{Fe}}_{20}{\mathrm{Ni}}_{80})$. By measuring the magnetic moment as a function of the temperature in S/F/S trilayers for different thicknesses of the middle F layer, we give evidence of the presence of a magnetic stray field of the F layer. For values of F-layer thickness below a threshold, we establish a correlation between the magnetic measurements of the S/F/S trilayers and the anomalous magnetic dependence of the critical current in S/Insulator/thin superconducting film/F/S (SIsFS) Josephson junctions (JJs). These complementary investigations provide a self-consistent method to fully characterize S/F heterostructures and possibly demonstrate effects arising from the mutual interactions between ferromagnetism and superconductivity. A shift in the Fraunhofer critical current oscillations has been observed in the opposite direction to the one commonly observed in JJs with F barriers, as it has been recently predicted by inverse and electromagnetic proximity theories. This inverse memory effect is relevant for the design of these heterostructures as memory cells and spintronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    0
    Citations
    NaN
    KQI
    []