Intriguing effects of selection intensity on the evolution of prosocial behaviors

2021 
In many models of evolving populations, genetic drift has an outsized role relative to natural selection, or vice versa. While there are many scenarios in which one of these two assumptions is reasonable, intermediate balances between these forces are also biologically relevant. In this study, we consider some natural axioms for modeling intermediate selection intensities, and we explore how to quantify the long-term evolutionary dynamics of such a process. To illustrate the sensitivity of evolutionary dynamics to drift and selection, we show that there can be a "sweet spot" for the balance of these two forces, with sufficient noise for rare mutants to become established and sufficient selection to subsequently spread. In particular, this balance allows prosocial traits to evolve in evolutionary models that were previously thought to be unconducive to the emergence and spread of altruistic behaviors. Furthermore, the effects of selection intensity on long-run evolutionary outcomes in these settings, such as when there is global competition for reproduction, can be highly non-monotonic. Although intermediate selection intensities (neither weak nor strong) are notoriously difficult to study analytically, they are often biologically relevant; and the results we report here suggest that they can elicit novel and rich dynamics in the evolution of prosocial behaviors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    0
    Citations
    NaN
    KQI
    []