Effect of Dissolution of Titanium Ions on Ti Alloys Electrodeposition from EMIC-AlCl3 Ionic Liquid at Low Temperature

2021 
In this work, the dissolution of Ti ions from a sacrificial Ti anode during electrolysis on the reduction behavior of Ti–Al alloy electrodeposits from a Lewis acidic eutectic mixture of 1-ethyl-3-methylimidazolium chloride (EMIC) and a 0.667-mol fraction of aluminum chloride (AlCl3) is investigated. The Ti ions are dissolved in EMIC-AlCl3 ionic liquid (IL) by potentiostatic and galvanostatic electrolysis using chronoamperometry (CA) and chronopotentiometry (CP) techniques, respectively. At the same time, the electrodeposition of the Ti–Al alloy is accomplished on the copper cathode electrode at 383 K using the Ti anode. The dissolution, concentration, and deposition of Ti species are controlled by varying the electrolysis current, potential, and the electrolysis duration (1–3 h). The electrochemical reduction behavior of Ti and Al ions is studied on all Pt wire electrodes using cyclic voltammetry (CV). SEM studies revealed homogeneous and crystalline Ti–Al electrodeposits for CP-electrolysis. EDS and XRD revealed 16 at %. Ti with a cubic Ti0.12Al0.88 phase of Ti–Al alloy obtained from 1 h CP-electrolysis. The Ti content in Ti–Al alloy decreased with an increase in electrolysis time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []