Doping of Titania with Manganese for Improving Cycling and Rate Performances in Lithium-ion Batteries

2020 
Abstract Titanium dioxide have received a much attention for lithium-ion batteries due to safety as anode upon fast and low temperature cycling as well as appropriate stability during insertion and extraction of guest ions. However, TiO2 has low conductivity and sluggish diffusion of Li+. In order to eliminate these shortcomings, reducing of particle size and doping are considered as promising approaches. Herein, we investigate the effect of doping with manganese (atomic ratios of Mn/Ti = 0.05; 0.1; 0.2) on characteristics of anatase titania having nanoparticulate morphology. As found, Mn/Ti = 0.05 is optimal dopant concentration in terms of battery performance of titania: the capacity of 113 mAh g–1 was still maintained after 118 cycles at 1C that is rather higher as compared to undoped anatase. Such improved electrochemical behavior is associated with anatase lattice expansion due to Mn3+ incorporation and enhanced conductivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    10
    Citations
    NaN
    KQI
    []