Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction

2012 
Abstract Purpose To assess the impact of body mass index (BMI)-adapted protocols and iterative reconstruction algorithms (iDose) on patient radiation exposure and image quality in patients undergoing prospective ECG-triggered 256-slice coronary computed tomography angiography (CCTA). Methods Image quality and radiation exposure were systematically analyzed in 100 patients. 60 Patients underwent prospective ECG-triggered CCTA using a non-tailored protocol and served as a ‘control’ group (Group 1: 120 kV, 200 mA s). 40 Consecutive patients with suspected coronary artery disease (CAD) underwent prospective CCTA, using BMI-adapted tube voltage and standard (Group 2: 100/120 kV, 100–200 mA s) versus reduced tube current (Group 3: 100/120 kV, 75–150 mA s). Iterative reconstructions were provided with different iDose levels and were compared to filtered back projection (FBP) reconstructions. Image quality was assessed in consensus of 2 experienced observers and using a 5-grade scale (1 = best to 5 = worse), and signal- and contrast-to-noise ratios (SNR and CNR) were quantified. Results CCTA was performed without adverse events in all patients ( n  = 100, heart rate of 47–87 bpm and BMI of 19–38 kg/m 2 ). Patients examined using the non-tailored protocol in Group 1 had the highest radiation exposure (3.2 ± 0.4 mSv), followed by Group 2 (1.7 ± 0.7 mSv) and Group 3 (1.2 ± 0.6 mSv) (radiation savings of 47% and 63%, respectively, p p p Conclusions Prospective ECG-triggered 256-slice CCTA allows for visualization of the coronary artery tree with high image quality within a wide range of heart rates and BMIs. The combination of BMI-adapted protocols with iterative reconstruction algorithms can reduce radiation exposure for the patients and simultaneously improve image quality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    55
    Citations
    NaN
    KQI
    []