Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia

2007 
Gain-of-function mutations in NOTCH1 are common in T-cell lymphoblastic leukemias (T-ALL), making this receptor a promising target for drugs such as γ-secretase inhibitors, which block a proteolytic cleavage required for NOTCH1 activation. However, the enthusiasm for these therapies has been tempered by tumor resistance and the paucity of information on the oncogenic programs regulated by oncogenic NOTCH1. Here we show that NOTCH1 regulates PTEN expression and the activity of the PI3K-AKT signaling pathway in normal and leukemic T cells. Notch signaling and the PI3K-AKT pathway synergize in vivo in a Drosophila model of Notch-induced tumorigenesis, and mutational loss of PTEN is associated with resistance to NOTCH1 inhibition in human T-ALL. Overall, these findings identify the transcriptional control of PTEN and the regulation of the PI3K/ AKT pathway as key elements of the leukemogenic program activated by NOTCH1 and provide the basis for the design of new therapeutic strategies for T-ALL. NOTCH receptors directly transduce extracellular signals at the cell surface into changes in gene expression that regulate differentiation, self renewal, proliferation and apoptosis 1 . Constitutively active forms of the NOTCH1 receptor contribute to over 50% of human T-cell lymphoblastic leukemias and lymphomas (T-ALL) 2 , and have also been implicated in the pathogenesis of solid tumors, such as breast carcinomas, gliomas and neuroblastoma 3-5 .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    740
    Citations
    NaN
    KQI
    []