Optimization of basic magenta adsorption onto Fe/Cu nanocomposites synthesized by sweet potato leaf extract using response surface methodology

2021 
Green synthesis of metal nanoparticles using plant extracts as an effective bio-reducing reagent has attracted considerable attention. Fe/Cu nanocomposites synthesized by extracts of sweet potato leaves served to remove basic magenta (BM) from aqueous solution. The adsorption operation conditions of BM on Fe/Cu nanocomposites were optimum by Box-Behnken design (BBD) model of response surface methodology (RSM). The adsorption equilibrium data were well described by the Sips and Redlich-Peterson models. The thermodynamic studies showed that the adsorption process was endothermic and spontaneous. The maximum adsorption capacity from the Sips model was 235.92 mg/g at 298 K, which indicated that Fe/Cu nanocomposites had potential application in wastewater treatment. As indicated by pseudo-second order kinetics model, the adsorption of BM onto Fe/Cu nanocomposites could be achieved through the complexation, H-bonding, π-π adsorbate-adsorbent interaction, and electrostatic interaction at different pH values.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []