Double plating is associated with higher fixation strength than single plating in osteoporotic fractures of the scapular spine: a biomechanical study.

2021 
Introduction The number of atraumatic stress fractures of the scapular spine associated with reverse shoulder arthroplasty is increasing. At present, there is no consensus regarding the optimal treatment strategy. Due to the already weakened bone, fractures of the scapular spine require a high fixation stability. Higher fixation strength may be achieved by double plating. The aim of this study was to evaluate the biomechanical principles of double plating in comparison to single plating for scapular spine fractures. Methods In this study, eight pairs (n = 16) of human shoulders were randomised pairwise into two groups. After an osteotomy at the level of the spinoglenoid notch, one side of each pair received fracture fixation with a single 3.5 LCP (Locking Compression Plate) plate. The contralateral scapular spine was fixed with a 3.5 LCP and an additional 2.7 LCP plate in 90-90 configuration. The biomechanical test protocol consisted of 700 cycles of dynamic loading and a load-to-failure test with a servohydraulic testing machine. Failure was defined as macroscopic catastrophic failure (screw cut-out, plate breakage). The focus was set on the results of specimens with osteoporotic bone quality. Results In specimens with an osteoporotic bone mineral density (BMD; n = 12), the mean failure load was significantly higher for the double plate group compared to single plating (471 N vs. 328 N; p = 0.029). Analysis of all specimens (n = 16) including four specimens without osteoporotic BMD revealed no significant differences regarding stiffness and failure load (p > 0.05). Conclusion Double plating may provide higher fixation strength in osteoporotic bone in comparison to a single plate alone. This finding is of particular relevance for fixation of scapular spine fractures following reverse shoulder arthroplasty. Level of evidence Controlled laboratory study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []