High Performance Na-O2 Batteries and Printed Microsupercapacitors Based on Water-Processable, Biomolecule-Assisted Anodic Graphene
2020
Integrated approaches that expedite the production and processing of graphene into useful structures and devices, particularly through simple and environmentally friendly strategies, are highly desirable in the efforts to implement this two-dimensional material in state-of-the-art electrochemical energy storage technologies. Here, we introduce natural nucleotides (e.g., adenosine monophosphate) as bifunctional agents for the electrochemical exfoliation and dispersion of graphene nanosheets in water. Acting both as exfoliating electrolytes and colloidal stabilizers, these biomolecules facilitated access to aqueous graphene bio-inks that could be readily processed into aerogels and inkjet-printed interdigitated patterns. Na-O2 batteries assembled with the graphene-derived aerogels as the cathode and a glyme-based electrolyte exhibited a full discharge capacity of ∼3.8 mAh cm–2 at a current density of 0.2 mA cm–2. Moreover, shallow cycling experiments (0.5 mAh cm–2) boasted a capacity retention of 94% after ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
71
References
11
Citations
NaN
KQI