On the Use of Programmable Metasurfaces in Vehicular Networks

2021 
Metasurface-based intelligent reflecting surfaces constitute a revolutionary technology which can serve the purpose of alleviating the blockage problem in mmwave communication systems. In this work, we consider the hypersurface paradigm complementing the software defined metasurface with an embedded controller network in order to facilitate the dissemination of reconfiguration directives to unit cell controllers. For the first time, we describe the methodology with which to characterize the workload within this embedded network in the case of the metasurface tracking multiple users and we use a vehicular communications setting to showcase the methodology. Beyond that, we demonstrate use cases of the workload analysis. We show how the workload characterization can guide the design of information dissemination schemes achieving significant reduction in the network traffic. Moreover, we show how the workload, as a measure of the consumed power, can be used in designing energy efficient communication protocols through a multi-objective optimization problem maximizing the achieved utilization while at the same time minimizing the workload incurred.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []