Adaptive face representation via class-specific and intra-class variation dictionaries for recognition
2018
Face recognition has attracted extensive interests due to its wide applications. However, there are many challenges in the real world scenario. For example, relatively few samples are available for training. Face images collected from surveillance cameras may consist of complex variations (e.g. illumination, expression, occlusion and pose). To address these challenges, in this paper we propose learning class-specific and intra-class variation dictionaries separately. Specifically, we first develop a discriminative class-specific dictionary amplifying the differences between training classes. We impose a constraint on sparse coefficients, which guarantees the sparse representation coefficients having small within-class scatter and large between-class scatter. Moreover, we introduce a new intra-class variation dictionary based on the assumption that similar variations from different classes may share some common features. The intra-class variation dictionary not only captures the inner-relationship of variations, but also addresses the limitation of the manually designed dictionaries that are person-specific. Finally, we apply the combined dictionary to adaptively represent face images. Experiments conducted on the AR, CMU-PIE, FERET and Extended Yale B databases show the effectiveness of the proposed method.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
54
References
2
Citations
NaN
KQI