Generation of attosecond x-ray pulses with a multi-cycle two-color ESASE scheme
2009
Generation of attosecond x-ray pulses is attracting much attention within the x-ray free-electron laser (FEL) user community. Several schemes using extremely short laser pulses to manipulate the electron bunches have been proposed. In this paper, we extend the attosecond two-color ESASE scheme proposed by Zholents et al. to the long optical cycle regime using a second detuned laser and a tapered undulator. Both lasers can be about ten-optical-cycles long, with the second laser frequency detuned from the first to optimize the contrast between the central and side current spikes. A tapered undulator mitigates the degradation effect of the longitudinal space charge (LSC) force in the undulator and suppresses the FEL gain of all side current peaks. Simulations using the LCLS parameters show a single attosecond x-ray spike of {approx} 110 attoseconds can be produced. The second laser can also be detuned to coherently control the number of the side x-ray spikes and the length of the radiation pulse.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
69
Citations
NaN
KQI