Improvement of the Gear Shaping Effectiveness for Bimetal Gears of Internal Gearing with a Friction Coating

2021 
This paper presents an experimental study of the gear shaping process of the internal gearing with a friction coating. It is known that this process is characterized by the occurrence of significant vibrations, the decrease in the stability of the cutting tool, and the ambiguity of the technological parameters. These factors limit the ability to process bimetallic discs with friction coatings on gear-shaping machines. Therefore, the dependence of the amplitude of oscillations of the ram and the table with the fixture for clamping the package of parts on different machining modes are investigated in the paper. The experiment was performed on a gear-shaping machine model TOS OHO 50 and using an accelerometer 7290A-2. To register the vibration acceleration, the Information Collection System “National instruments mod. NI-9234” was used. Also, during the experiment, the analysis of the period of stability of the cutting tool depending on the number of double runs of the shaper-type cutter and circular feed. The tool’s stability was analyzed by the chamfer wear on the rear surface, which was checked by a microscope. According to the experiment results, the optimal processing mode, according to the tool’s maximum productivity and stability, is proposed in the paper. The application of the proposed processing mode reduces the self-excited vibrations of the technological system, increases the cutting tool’s stability, stabilizes the surface roughness parameters, and increases the gear-shaping process’s efficiency of the package of friction discs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    0
    Citations
    NaN
    KQI
    []