Sialylation of E-cadherin does not change the spontaneous or ET-18-OMe-mediated aggregation of MCF-7 human breast cancer cells

1999 
We have investigated the role of sialylation on cell-cell adhesion mediated by E-cadherin. Two MCF-7 human breast cancer cell variants were studied: MCF-7/AZ cells showed a spontaneous cell-cell adhesion in the fast and slow aggregation assay, whereas the adhesion deficient MCF-7/6 cell variant failed to form larger aggregates, suggesting that E-cadherin was not functional under the conditions of both assays. We measured the sialyltransferase activities using Galβ1-3GalNAcα-O-benzyl and Galβ1- 4GlcNAcα-O-benzyl as acceptor substrates as well as mRNA levels of four sialyltransferases, ST3Gal I, ST3Gal III, ST3Gal IV, ST6Gal I, using multiplex RT-PCR in MCF-7 cell variants. The α2-6 and α2-3 sialylation of E-cadherin was investigated by immuno-blot using Sambucus nigra agglutinin and Maackia amurensis agglutinin. Compared to the adhesion-proficient MCF-7/AZ cells, the adhesion-deficient MCF-7/6 cell line apparently lacks ST6Gal I mRNA, has a lower ST3Gal I mRNA, a lower ST3Gal I sialyltransferase activity, and no α2-3 linked sialic acid moieties on E-cadherin. The potential anti-cancer drug 1-O-octadecyl-2-O-methylglycero-3-phosphocholine (ET-18-OMe, 48 h, 25 μg/ml) belonging to the class of alkyllysophospholipids restored the E-cadherin function in the adhesion-deficient MCF-7/6 cells as evidenced by an increased aggregation. ET-18-OMe caused loss of ST6Gal I mRNA in MCF-7/AZ cells but no changes of sialyltransferase activities or sialic acid moieties on E-cadherin could be observed. We conclude that Ca2+-dependent, E-cadherin-specific homotypic adhesion of MCF-7/AZ or MCF-7/6 cells treated with ET-18-OMe was not affected by sialylation of E-cadherin.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    6
    Citations
    NaN
    KQI
    []