A Comparison of the Morphology and Stability of Relativistic and Nonrelativistic Jets

1999 
We compare results from a relativistic and a nonrelativistic set of 2D axisymmetric jet simulations. For a set of five relativistic simulations that either increase the Lorentz factor or decrease the adiabatic index we compute nonrelativistic simulations with equal useful power or thrust. We examine these simulations for morphological and dynamical differences, focusing on the velocity field, the width of the cocoon, the age of the jets, and the internal structure of the jet itself. The primary result of these comparisons is that the velocity field of nonrelativistic jet simulations cannot be scaled up to give the spatial distribution of Lorentz factors seen in relativistic simulations. Since the local Lorentz factor plays a major role in determining the total intensity for parsec scale extragalactic jets, this suggests that a nonrelativistic simulation cannot yield the proper intensity distribution for a relativistic jet. Another general result is that each relativistic jet and its nonrelativistic equivalents have similar ages (in dynamical time units, = R/a_a, where R is the initial radius of a cylindrical jet and a_a is the sound speed in the ambient medium). In addition to these comparisons, we have completed four new relativistic simulations to investigate the effect of varying thermal pressure on relativistic jets. The simulations generally confirm that faster (larger Lorentz factor) and colder jets are more stable, with smaller amplitude and longer wavelength internal variations. The apparent stability of these jets does not follow from linear normal mode analysis, which suggests that there are available growing Kelvin-Helmholtz modes. (Abridged.)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    70
    Citations
    NaN
    KQI
    []