Contribution of surface leaf-litter breakdown and forest composition to benthic oxygen demand and ecosystem respiration in a South Georgia blackwater river

2014 
AbstractMany North American blackwater rivers exhibit low dissolved O2 (DO) that may be the result of benthic respiration. We examined how tree species affected O2 demand via the quantity and quality of litter produced. In addition, we compared areal estimates of surface leaf-litter microbial respiration to sediment O2 demand (SOD) and ecosystem respiration (ER) in stream and swamp reaches of a blackwater river to quantify contributions of surface litter decomposition to O2 demand. Litter inputs averaged 917 and 678 g m−2 y−1 in the swamp and stream, respectively. Tree species differentially affected O2 demand via the quantity and quality of litter produced. Bald cypress (Taxodium distichum) contributed most litter inputs because of its dominance and because it produced more litter per tree, thereby making greater relative contributions to O2 demand in the swamp. In the stream, water oak (Quercus nigra) produced litter supporting lower fungal biomass and O2 uptake rates, but produced more litter than red ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    5
    Citations
    NaN
    KQI
    []