Long-Term Stable Recombination Layer for Tandem Polymer Solar Cells Using Self-Doped Conducting Polymers.

2016 
Recently, the most efficient tandem polymer solar cells (PSCs) have used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a p-type component of recombination layer (RL). However, its undesirable acidic nature, originating from insulating PSS, of PEDOT:PSS drastically reduces the lifetime of PSCs. Here, we demonstrate the efficient and stable tandem PSCs by introducing acid-free self-doped conducting polymer (SCP), combined with zinc oxide nanoparticles (ZnO NPs), as RL for PEDOT:PSS-free tandem PSCs. Moreover, we introduce an innovative and versatile nanocomposite system containing photoactive and p-type conjugated polyelectrolyte (p-CPE) into the tandem fabrication of an ideal self-organized recombination layer. In our new RL, highly conductive SCP facilitates charge transport and recombination process, and p-CPE helps to achieve nearly loss-free charge collection by increasing effective work function of indium tin oxide (ITO) and SCP. Because of the synergistic effect of extremely ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    29
    Citations
    NaN
    KQI
    []