Deep learning-based relative stopping power mapping generation with cone-beam CT in proton radiation therapy

2020 
Proton radiation therapy has shown highly conformal distribution of prescribed dose in target with outstanding normal tissue sparing stemming from its steep dose gradient at the distal end of the beam. However, the uncertainty in everyday patient setup can lead to a discrepancy between treatment dose distribution and the planning dose distribution. Conebeam CT (CBCT) can be acquired daily before treatment to evaluate such inter-fraction setup error, while a further evaluation on resulted dose distribution error is currently not available. In this study, we developed a novel deep-learning based method to predict the relative stopping power maps from daily CBCT images to allow for online dose calculation in a step towards adaptive proton radiation therapy. 20 head-and-neck patients with CT and CBCT images are included for training and testing. Our CBCT RSP results were evaluated with RSP maps created from CT images as the ground truth. Among all the 20 patients, the averaged mean absolute error between CT-based and CBCT-based RSP was 0.04±0.02, the averaged mean error was -0.01±0.03 and the averaged normalized correlation coefficient was 0.97±0.01. The proposed method provides sufficiently accurate RSP map generation from CBCT images, possibly allowing for CBCT-guided adaptive treatment planning for proton radiation therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []