First experimental results of particle re-suspension in a low pressure wind tunnel applied to the issue of dust in fusion reactors

2015 
Abstract During the normal operating condition of the future ITER tokamak, a massive production of dust in the toroidal vacuum vessel is expected. This dust, originating from the erosion of tungsten and beryllium internal walls of the torus by the plasma, would be mobilized to some extent during a loss of vacuum accident (LOVA). For safety reasons, it is essential to quantify the re-suspended dust fraction during such an event. Here, we provide preliminary experimental data of dust re-suspension obtained in the wind tunnel of the European Space Agency (ESA) at low pressures (300, 130 and 10 mbar). The experimentations were performed with multilayer deposits. We used two powders with a median diameter at 15.5 μm and 21.8 μm. A negative influence of the low pressure in the re-suspension mechanism is observed. For example, given a re-suspension fraction of 10%, increasing friction shear velocities are derived for decreasing absolute pressures: 300 mbar/0.66 m s −1 ; 130 mbar/1.08 m s −1 ; and 10 mbar/1.84 m s −1 . In addition, we highlight the friction reduction for Kundsen numbers greater than 0.1 by an analysis of the airflow forces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    13
    Citations
    NaN
    KQI
    []