Metabolomics analysis reveals the role of oxygen control in the nitrogen limitation induced lipid accumulation in Mortierella alpine.

2020 
Lipid hyperaccumulation in oleaginous microorganisms is generally induced by nitrogen limitation, while oxygen supply can influence biomass growth and cell metabolism. Although strategies based on nitrogen limitation or oxygen control have been extensively explored and applied in various oleaginous microorganisms, the role of oxygen supply in nitrogen limitation induced lipid hyperaccumulation still remains unclear. Here, we systematically surveyed the effects of oxygen supply on the oleaginous fungus M. alpina cultured in nitrogen limited conditions through integration of physiochemical parameters and metabolomics analysis. Our results indicated that a high oxygen supply promoted carbon/nitrogen consumption and was used for rapid biomass synthesis, while either high or low oxygen supply conditions were adverse to lipid and ARA accumulation. Different oxygen supply level significantly affected the balance between fermentation for lipid synthesis and respiration for energy generation. Under nitrogen limitation, a suitable oxygen supply promoted the recycling of preformed nitrogen and increased the redirection of carbon towards fatty acid synthesis through the hub centred around glutamic acid coupled to the intermediate metabolism of carbon in the TCA cycle, while a high oxygen supply favored the respiration process and enhanced the degradation of LC-PUFAs, rather than fermentation for fatty acid synthesis. This system-level insight reveals the underlying metabolic mechanism of oxygen control in nitrogen limitation induced lipid accumulation, and provides theoretical support for the integration of oxygen control with nutrient supply for efficient microbial oil production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    4
    Citations
    NaN
    KQI
    []