Remifentanil protects against myocardial ischemia/reperfusion injury via miR-205-mediated regulation of PINK1.

2021 
Myocardial ischemia/reperfusion (I/R) injury could lead to severe cardiovascular ischemic disease, including myocardial infarction and contractile dysfunction. Remifentanil demonstrated protective effect on myocardial I/R injury. The underlying pathophysiological mechanism was then investigated in this study. In the current study, primary cardiomyocytes were isolated from rats, and then preconditioned with remifentanil. Rats, tail vein injected with miR-205 antagomir, were subjected to infusion of remifentanil, and then subjected to regional ischemia followed by reperfusion. The results demonstrated that cell viability of hypoxia/reoxygenation-induced cardiomyocytes was increased post remifentanil, while the apoptosis was decreased accompanied with reduced cleaved caspase-3 expression. Hypoxia/reoxygenation treatment increased miR-205 and decreased PINK1 (PTEN induced putative kinase 1) expression. However, preconditioning with remifentanil reduced miR-205 and enhanced PINK1. Moreover, over-expression of miR-205 decreased PINK1 expression and counteracted the effects of remifentanil-induced increase of cell viability and decrease of cell apoptosis in hypoxia/reoxygenation-induced cardiomyocytes. Injection with miR-205 antagomir improved remifentanil-induced decrease of infarct size and LDH (lactic acid dehydrogenase) activity in rat model with I/R injury. In conclusion, miR-205 might participate in the protective effect of remifentanil in rat myocardial I/R injury via regulation of PINK1, providing a potential target for amelioration of cardiovascular ischemic disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []