The intrinsic fluorescence of the alpha subunit of transducin. Measurement of receptor-dependent guanine nucleotide exchange.

1988 
Abstract We have made use of the enhancement of the intrinsic fluorescence of the alpha subunit of transducin (alpha T), which accompanies guanine nucleotide exchange, to follow the reconstituted interactions between pure rhodopsin and pure transducin in phospholipid vesicles. When the pure alpha T.GDP complex is added to lipid vesicles containing rhodopsin and the beta gamma T complex, a light- and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-dependent enhancement of the fluorescence emission of alpha T is observed. When GTP is substituted for GTP gamma S, a similar enhancement of the intrinsic fluorescence of alpha T occurs; however, this enhancement is transient and precedes a fluorescence decay which is complete in 2-5 min. The fact that the fluorescence decay is specifically induced by GTP and is not observed either with nonhydrolyzable GTP analogs or with NaF (plus AlCl3) indicates that the decay represents GTP hydrolysis in alpha T. The dose-response profiles for the effects of the beta gamma T complex on the rate and extent of the GTP gamma S-stimulated fluorescence enhancement of alpha T have also been examined. The addition of relatively low levels of beta gamma T to these reconstituted systems can promote the GTP gamma S-stimulated enhancement of the fluorescence of multiple alpha T subunits with half-maximal enhancement occurring at alpha T:beta gamma T ratios of 150:1. These findings are consistent with earlier suggestions (Fung, B. K.-K. (1983) J. Biol. Chem. 258, 10495-10502) that the beta gamma T subunit dissociates from alpha T as a result of the GDP-GTP exchange reaction and thus can act catalytically to promote the activation of a number of inactive alpha T species. However, the dependence of the rate of the GTP gamma S-stimulated fluorescence enhancement on beta gamma T is complex and cannot be explained adequately by simple models where alpha T-beta gamma T interactions (or rhodopsin-transducin interactions) are rate-limiting for the rhodopsin-stimulated activation of the alpha T subunits. Overall, the results reported here demonstrate that fluorescence spectroscopy can be used to monitor directly a receptor-catalyzed activation-deactivation cycle of a GTP-binding protein within a lipid milieu.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    87
    Citations
    NaN
    KQI
    []