Probabilistic target definition and planning in patients with prostate cancer.

2021 
Intro Current radiation therapy (RT) planning guidelines handle uncertainties in radiation therapy using geometric margins. This approach is simple to use but oversimplifies complex underlying processes and is cumbersome for non-homogeneous dose prescriptions. In this work, we characterize the performance of a novel probabilistic target definition and planning (PTP) approach, which uses voxel-level tumor likelihood information in treatment plan optimization. Methods We expanded a treatment planning system with probabilistic therapy planning functionality that utilizes non-binary target maps (TM) as voxel-level input to dose plan optimization. Different dose plans were calculated and compared for twelve prostate cancer patients with multiparametric magnetic resonance imaging (MP-MRI) derived TMs. Dose plans were created using both classical and PTP approaches for uniform and integrated dose boost prescriptions. Dose performance between the different approaches was compared using dose benchmarks on target and organ-at-risk (OAR) volumes. Results Over all dose metrics, PTP was shown to be comparable to classical planning. For plans of uniform dose prescription, the PTP approach created plans within 1 Gy of the classical planning approach across all dose metrics, with no significant differences (p>0.2). For plans with the integrated dose boost, PTP plans exhibited higher dose heterogeneity, but still showed target doses comparable to the classical approach, without increasing doses to OAR. Conclusion In this work we introduce direct incorporation of probabilistic target definition into treatment planning. This treatment planning approach can produce both uniform dose plans and plans with integrated dose boosts that are comparable to ones created using classical dose planning. PTP is a flexible way to optimize external beam radiotherapy, as it is not limited by the use of margins. PTP can produce dose plans equivalent to classical planning, while also allows for greater versatility in dose prescription and direct incorporation of patient target definition uncertainty into treatment planning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []