PREVENTING THE INFLAMMATORY RESPONSE TO COBALT IONS

2017 
Background Increased revision rates and early failure of Metal-on-Metal (MoM) hip replacements are often due to adverse reaction to metal debris (ARMD). ARMD describes numerous symptoms in patients such as pain, osteolysis and soft tissue damage. Cobalt is a major component of MoM joints and can initiate an immune response via activation of the innate immune receptor Toll-like receptor 4 (TLR4). This leads to increased secretion of inflammatory cytokines e.g. interleukin-8 (IL-8). This study investigates whether TLR4-specific antagonists inhibit the inflammatory response to cobalt using IL-8 gene expression and protein secretion as a marker of TLR4 activation. Methods MonoMac 6 (MM6) cells, a human macrophage cell line, were treated with TLR4-specific antagonists followed by 0.75mM of cobalt chloride. Lipopolysaccharide (LPS), a known TLR4 agonist was used as a positive control. Enzyme-linked immunosorbent assay (ELISA) was used to assess IL-8 protein secretion and real time- polymerase chain reaction (RT-PCR) allowed quantification of IL-8 gene expression. Results MM6 cells treated with cobalt and LPS up-regulate IL-8 gene expression and protein secretion (n=3). The addition of TLR4-specific antagonists significantly inhibits this up-regulation suggesting the observed effects are TLR4-mediated. MM6 cells stimulated with cobalt (0.75mM) for 16 hours demonstrated a 27-fold increase in IL-8 gene expression (p-value = Conclusion TLR4-specific antagonists inhibit cobalt-mediated IL-8 gene expression and protein secretion in MM6 cells. This finding demonstrates the potential to exploit this inhibition in the context of MoM joint replacements by contributing to the development of novel therapeutics designed to improve MoM implant longevity, reduce the incidence of ARMD and prevent subsequent revision surgery.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []