Cys-Gly specific dipeptidase Dug1p from S. cerevisiae binds promiscuously to di-, tri-, and tetra-peptides: Peptide-protein interaction, homology modeling, and activity studies reveal a latent promiscuity in substrate recognition.

2011 
Abstract Dug1p is a recently identified novel dipeptidase and plays an important role in glutathione (GSH) degradation. To understand the mechanism of its substrate recognition and specificity towards Cys-Gly dipeptides, we characterized the solution properties of Dug1p and studied the thermodynamics of Dug1p–peptide interactions. In addition, we used homology modeling and ligand docking approaches to get structural insights into Dug1p–peptide interaction. Dug1p exists as dimer and the stoichiometry of peptide–Dug1p complex is 2:1 indicating each monomer in the dimer binds to one peptide. Thermodynamic studies indicate that the free energy change for Dug1p–peptide complex formation is similar (▵G bind  ∼ −7.0 kcal/mol) for a variety of peptides of different composition and length (22 peptides). Three-dimensional model of Dug1p is constructed and docking of peptides to the modeled structure suggests that hydrogen bonding to active site residues (E172, E171, and D137) lock the N-terminal of the peptide into the binding site. Dug1p recognizes peptides in a metal independent manner and peptide binding is not sensitive to salts (dlogK/dlog[salt] ∼ 0) over a range of [NaCl] (0.02–0.5 M), [ZnCl 2 ], and [MnCl 2 ] (0–0.5 mM). Our results indicate that promiscuity in peptide binding results from the locking of peptide N-terminus into the active site. These observations were supported by our competitive inhibition activity assays. Dug1p activity towards Cys-Gly peptide is significantly reduced (∼ 70%) in the presence of Glu-Cys-Gly. Therefore, Dug1p can recognize a variety of oligopeptides, but has evolved with post-binding screening potential to hydrolyze Cys-Gly peptides selectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    11
    Citations
    NaN
    KQI
    []