Electron thermalization and attachment in pulse-irradiated oxygen studied by time-resolved microwave conductivity

1990 
Abstract The microwave conductivity of oxygen gas following nanosecond pulsed irradiation has been studied for pressures from 5 to 50 torr. The conductivity is found to decrease by a factor of approx. 20 in the early stages ( tN 11 s cm -3 ) following the pulse. This is attributed to a decrease in the electron collision frequency as the initial excess energy of the electrons becomes degraded. A further decrease found at longer times is due to the three-body attachment of electrons to O 2 with a rate constant of 2.4 x 10 -30 cm 6 s -1 . Above a pressure of approx. 30 torr significant attachment begins to occur while electrons are still superthermal. The time at which the microwave signal is within 10% of the value corresponding to thermal energies is given by τ th P ≈ 15 μs.torr.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    1
    Citations
    NaN
    KQI
    []