Effect of the Mn/Fe Ratio on the Microstructure and Magnetic Properties in the Powder Form (Fe 1− x Mn x ) 2 P System

2017 
The structure, morphology, and magnetic properties of the mechanically alloyed iron manganese phosphides (Fe1−x Mn x )2P with 0.15 ≤ x ≤ 0.75 (Mn/Fe ratio = 0.17, 0.33, 0.66, and 3) have been studied by means of X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, and BS1 and BS2 magnetometry. The powder form (Fe1−x Mn x )2P compounds exhibit multiphase structures that contain Fe(Mn)-type solid solution and Fe2P-type, Mn2P-type, Fe3P-type, and MnP/FeP-type phosphides. The magnetization versus temperature reveals the existence of multiple magnetic phase transitions. The saturation magnetization, coercivity, and squarness M r/M s ratio values are discussed as a function of both the Mn content and the temperature. From the approach to saturation magnetization studies, several fundamental magnetic parameters were extracted. The local magnetic anisotropy constant K 1 was determined.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    4
    Citations
    NaN
    KQI
    []