Enhanced Antiglioblastoma Efficacy of Neovasculature and Glioma Cells Dual Targeted Nanoparticles

2016 
Combining treatment of anticancer cells and antiangiogenesis is considered to be a potential targeted strategy for brain glioblastoma therapy. In this study, by utilizing the overexpression of Interleukin 13 receptor α2 (IL-13Rα2) on the glioma cells and heparan sulfate on neovascular endothelial cells, we developed a paclitaxel (PTX) loaded Pep-1 and CGKRK peptide-modified PEG–PLGA nanoparticle (PC-NP-PTX) for glioma cells and neovasculature dual-targeted chemotherapy to enhance the antiglioma efficacy. There were significant differences both on the enhancement of cellular uptake in HUVEC and C6 cells and on the improvement of in vitro antiglioma activity in the respect of proliferation, tumor spheroid growth, tube formation, and migration between PC-NP-PTX and Taxol and NP-PTX. As for C6 cells, the IC50 were 3.59 ± 0.056, 2.37 ± 0.044, 1.38 ± 0.028, 1.82 ± 0.035, and 1.00 ± 0.016 μg/mL of Taxol, NP-PTX, Pep-NP-PTX, CGKRK-NP-PTX, and PC-NP-PTX, and for HUVEC cells, the IC50 were 0.44 ± 0.006, 0.33 ± 0.00...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    20
    Citations
    NaN
    KQI
    []