Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops

2021 
Abstract In this study, a full cycle of agricultural reuse of agro-food wastewater (synthetic fresh-cut wastewater, SFCWW) at pilot plant scale has been investigated. Treated SFCWW by ozonation and two solar processes (H2O2/solar, Fe3+-EDDHA/H2O2/solar) was used to irrigate two raw-eaten crops (lettuce and radish) grown in peat. Two foodborne pathogens (E. coli O157:H7 and Salmonella enteritidis) and five organic microcontaminants (OMCs: atrazine, azoxystrobin, buprofezin, procymidone and terbutryn) were monitored along the whole process. The three studied processes showed a high treatment capability (reaching microbial loads 90 % for solar treated and ozonated SFCWW, respectively) and bioaccumulation in both crops in comparison with the results obtained with untreated SFCWW. Moreover, the chlorophyll content in the harvested lettuces irrigated with SFCWW treated by Fe3+-EDDHA/H2O2/solar was twice than that irrigated with SFCWW treated by H2O2/solar and ozone, indicating the additional advantage of using Fe3+-EDDHA as an iron source to reduce the risk of iron chlorosis in crops. Finally, the chemical (dietary risk assessment for the combined exposure of the 5 OMCs) and quantitative microbiological risk assessment (QMRA) of the harvested crops showed the capability of the studied processes to reduce the risk associated with untreated SFCWW reuse by more than 50 % and more than 4 orders of magnitude, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []