Synthesis of strontium substituted hydroxyapatite by solution combustion route

2021 
Abstract Hydroxyapatite is a versatile compound resembling natural bone mineral. HAP insinuates feasibility with substitution ensuing in its application in various fields. The properties of calcium and strontium are cognate and pose as a bone-seeking trace-element that accumulates in new trabecular bone. Strontium substituted hydroxyapatite, Ca9.5Sr0.5(OH)2(PO4)6, was synthesized using citric acid as fuel and calcined 900 ​°C. The as-prepared product notably was characterized by powder X-ray diffraction, Fourier - Transform Infrared spectroscopy and Scanning Electron Microscope along with Energy Dispersive Spectroscopy. FT-IR analysis exhibited stretching and bending vibrations of (PO4)3- and OH− groups along without any signal of carbonate group. Studies showed that product formed is strontium substituted hydroxyapatite, and calcination temperature plays an essential role in the formation of hydroxyapatite phase. The precursors when calcined resulted in 46–50 ​nm of Sr substituted hydroxyapatite.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []