FeF3/Ordered Mesoporous Carbon (OMC) Nanocomposites for Lithium Ion Batteries with Enhanced Electrochemical Performance

2013 
FeF3 is of great interest as a potential candidate cathode material because of its low cost, abundance, environmental friendliness, and high theoretical capacity of about 237 mAh·g–1 in the voltage range of 2.0–4.5 V. However, FeF3 has drawbacks of poor cycling stability and rate performance because of its low intrinsic electrical conductivity and slow diffusion of lithium ions. These issues should be improved for the practical application of FeF3 in lithium-ion battery systems. In this study, FeF3/ordered mesoporous carbon (OMC) nanocomposites were synthesized by an incipient-wetness impregnation technique in a facile and scalable method. The tubular shaped OMC was utilized as both a conductive agent and a hard template for the formation of nanosized FeF3 particles. The FeF3/OMC nanocomposites showed enhanced capacity, cycling stability, and rate performance compared to bulk FeF3 in the voltage range of 2.0–4.5 V at room temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    41
    Citations
    NaN
    KQI
    []