Experimental evidences for bifurcation angles control on abandoned channel fill geometry
2020
Abstract. The nature of abandoned channels sedimentary fills has a significant influence on the development and evolution of floodplains and ultimately on fluvial reservoir geometry. A control of bifurcation geometry (i.e., bifurcation angle) on channel abandonment dynamics and resulting channel fills, such as sandplug, has been intuited many times but never quantified. In this study we present a series of experiments focusing on bedload transport designed to test the conditions for channel abandonment by modifying the bifurcation angle between channels, the flow incidence angles and the differential channel bottom slopes. We find that disconnection is possible in the case of asymmetrical bifurcations with high diversion angle (≥ 30°) and quantify for the first time a relationship between diversion angle and sandplug length and volume. The resulting sandplug formation is initiated in the flow separation zone at the external bank of the mouth of the diverted channel. Sedimentation in this zone initiates a feedback loop leading to sandplug growth, discharge decrease and eventually to channel disconnection. Finally, the formation processes and final complex architecture of sandplugs are described, allowing for a better understanding of their geometry. Although our setup lacks the complexity of natural rivers, our results seem to apply at larger scales. Taken into account, these new data will improve the realism of fluvial models.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
55
References
2
Citations
NaN
KQI