Amyloid accumulation drives proteome-wide alterations in mouse models of Alzheimers disease like pathology

2017 
Amyloid beta (Aβ) peptides impair multiple cellular pathways in the brain and play a causative role in Alzheimer's disease (AD) pathology, but how the brain proteome is remodeled during this process is unknown. To identify new protein networks associated with AD-like pathology, we performed global quantitative proteomic analysis in three mouse models at pre- and post-symptomatic ages. Our analysis revealed a robust and consistent increase in Apolipoprotein E (ApoE) levels in nearly all transgenic brain regions with increased Aβ levels. Taken together with prior findings on ApoE driving Aβ accumulation, this analysis points to a pathological dysregulation of the ApoE-Aβ axis. We also found dysregulation of protein networks involved in excitatory synaptic transmission consistent with AD pathophysiology. Targeted analysis of the AMPA receptor complex revealed a specific loss of TARPγ-2, a key AMPA receptor trafficking protein. Expression of TARPγ-2 in vivo in hAPP transgenic mice led to a restoration of AMPA currents. This database of proteome alterations represents a unique resource for the identification of protein alterations responsible for AD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []