Development of a 3D atlas of the embryonic pancreas for topological and quantitative analysis of heterologous cell interactions

2021 
Generating comprehensive image maps, while preserving spatial 3D context, is essential to quantitatively assess and locate specific cellular features and cell-cell interactions during organ development. Despite the recent advances in 3D imaging approaches, our current knowledge of the spatial organization of distinct cell types in the embryonic pancreatic tissue is still largely based on 2D histological sections. Here, we present a light-sheet fluorescence microscopy approach to image the pancreas in 3D and map tissue interactions at key development time points in the mouse embryo. We used transgenic mouse models and antibodies to visualize the three main cellular components within the developing pancreas, including epithelial, mesenchymal and endothelial cell populations. We demonstrated the utility of the approach by providing volumetric data, 3D distribution of distinct progenitor populations and quantification of relative cellular abundance within the tissue. Lastly, our image data were combined in an open source online repository (referred to as Pancreas Embryonic Cell Atlas). This image dataset will serve the scientific community by enabling further investigation on pancreas organogenesis but also for devising strategies for the in vitro generation of transplantable pancreatic tissue for regenerative therapies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []