Soil health, crop productivity, microbial transport, and mine spoil response to biochars

2016 
Biochars vary widely in pH, surface area, nutrient concentration, porosity, and metal binding capacity due to the assortment of feedstock materials and thermal conversion conditions under which it is formed. The wide variety of chemical and physical characteristics have resulted in biochar being used as an amendment to rebuild soil health, improve crop yields, increase soil water storage, and restore soils/spoils impacted by mining. Meta-analysis of the biochar literature has shown mixed results when using biochar as a soil amendment to improve crop productivity. For example, in one meta-analysis, biochar increased crop yield by approximately 10 %, while in another, approximately 50 % of the studies reported minimal to no crop yield increases. In spite of the mixed crop yield reports, biochars have properties that can improve soil health characteristics, by increasing carbon (C) sequestration and nutrient and water retention. Biochars also have the ability to bind enteric microbes and enhance metal binding in soils impacted by mining. In this review, we present examples of both effective and ineffective uses of biochar to improve soil health for agricultural functions and reclamation of degraded mine spoils. Biochars are expensive to manufacture and cannot be purged from soil after application, so for efficient use, they should be targeted for specific uses in agricultural and environmental sectors. Thus, we introduce the designer biochar concept as an alternate paradigm stating that biochars should be designed with properties that are tailored to specific soil deficiencies or problems. We then demonstrate how careful selection of biochars can increase their effectiveness as a soil amendment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    31
    Citations
    NaN
    KQI
    []