A fluoroimmunodiagnostic nanoplatform for thyroglobulin detection based on fluorescence quenching signal

2019 
Abstract This study describes the design of a novel fluoroimmunodiagnostic nanoplatform by using tannylated ferritin nanocages (TA-Fn). The tannylation process ensured the tannic acid was modified onto the ferritin nanocages without EDC, NHS or any reagents. The bare ferritin nanocages (Fn) had about 5.6 ± 0.14 nm average diameter, while tannylated ferritin nanocages had an estimated layer thickness of about 24 ± 2.2 nm. The FITC labelled thyroglobulin antibodies (FITC-TgAb) were conjugated to TA-Fn via multiple hydrogen bonds and hydrophobic interactions. The FITC labelled TgAb modified tannylated ferritin nanocages (FITC-TgAb-TA-Fn) had an estimated layer thickness of about 32 ± 3.1 nm. The FITC-TgAb-TA-Fn had good selectivity and specificity to rapidly capture and detect specific antigens via fluorescence quenching with relatively low-cost engineering. The Stern-Volmer plot was used to obtain limit of detection (LOD) and limit of quantification (LOQ). The LOD was 4.3 pg mL-1 and LOQ was 14.2 pg mL-1 in artificial human serum medium. These values were lower than the thyroglobulin detection limit with modern assays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    7
    Citations
    NaN
    KQI
    []