Effect of early grain feeding of beef steers on postabsorptive metabolism.

2015 
: The objective of this study was to determine the effect of early weaning followed by a period of high-grain feeding on plasma acetate kinetics and signaling protein phosphorylation in LM tissue of growing steers. We hypothesized that early grain feeding would result in altered cell signaling and acetate use to support observed improvements in carcass gain and marbling. Fall-born Angus × Simmental steers were weaned at 106 ± 4 d of age (early weaned [EW]; n = 6) and fed a high-grain diet for 148 d or remained with their dams (normal weaned [NW]; n = 6) on pasture until weaning at 251 ± 5 d of age. Both treatments were subsequently combined and grazed on mixed summer pasture to 394 ± 5 d of age followed by a feedlot ration until harvest at 513 ± 5 d of age. Longissimus muscle tissue biopsies were collected at 253 ± 5 and 394 ± 5 d of age and at harvest. Total and phosphorylated forms of 5' adenosine monophosphate-activated protein kinase (AMPK) and downstream proteins of the mammalian target of rapamycin signaling pathway were determined by western blotting. Eight steers were used to assess acetate clearance at different age points via a bolus infusion of acetate (4 mmol/kg of BW). Early weaned steers had greater (P < 0.05) ADG than NW steers during the early grain feeding period. Phosphorylated to total ratios of ribosomal protein S6 (rpS6) and ribosomal protein S6 kinase 1 (S6K1) were significantly different during the early grain feeding period. Phosphorylated to total ratios of S6K1, rpS6, acetyl-CoA carboxylase, and 4E binding protein 1 and the absolute amount of phosphorylated AMPK were correlated with ADG, explaining 46% of the variance. Acetate clearance rates were less (P < 0.05) and synthesis rates were greater (P = 0.06) in EW steers during early grain feeding. Acetate synthesis rates were also greater (P < 0.05) in NW steers at harvest, suggesting a permanent shift in the gut microflora or gut function in response to the treatment. Neither treatment nor acetate infusion significantly affected plasma glucose or insulin concentrations. Plasma β-hydroxybutyric acid concentrations increased with acetate infusion (P < 0.05). Based on these results, altered cell signaling during the early grain feeding period likely mediated increased protein deposition, leading to increased carcass weights, but observed changes in acetate appearance and clearance rates do not appear to explain the observed differences in intramuscular fat deposition during the terminal feeding period.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []