Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly

1996 
Functioning of the spoIIE locus of Bacillus subtilis is required for formation of a normal polar septum during sporulation and for activation of the transcription factor σF, which directs early forespore-specific gene expression. We have determined the DNA sequence of the wild type and several mutant alleles of the spoIIE gene of B. subtilis and sequenced a substantial portion of its presumptive homologue in Bacillus megaterium. We show that the spoIIE locus encodes a single large protein with a predicted molecular mass of 92 kDa. Each of five point-mutation alleles, which have traditionally defined the locus, and two transposon-generated mutations were shown to fall within the coding sequence for the 92 kDa gene product or within sequences expected to be required for its expression. The amino-terminal portion of the predicted SpoIIE gene product, comprising approximately 40% of the protein, is extremely hydrophobic and is expected to contain up to 12 membrane-spanning segments. The remainder of the protein contains no hydrophobic segments long enough to span a lipid bilayer and is therefore presumed to comprise one or more globular, aqueous-phase exposed domains. An in-frame fusion joining the 3′ end of the B. megaterium spoIIE coding sequence to the 5′ end of gfp, a gene encoding the green fluorescent protein (GFP) of Aquorea victoria, resulted in a strong, sporulation-specific fluorescent signal localized to the sites of sporulation septum assembly. We speculate that SpoIIE plays a role in assembling the sporulation septum, perhaps determining the special properties of the structure that permit intercompartment signalling during development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    99
    Citations
    NaN
    KQI
    []