Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
2019
Abstract. Spatial variability in snowpack properties negatively impacts our capacity to make direct measurements of snow water equivalent (SWE) using satellites. A comprehensive data set of snow microstructure (94 profiles at 36 sites) and snow layer thickness (9000 vertical profiles across 9 trenches) collected over two winters at Trail Valley Creek, NWT, Canada, were applied in synthetic radiative transfer experiments. This allowed robust assessment of the impact of first guess information of snow microstructural characteristics on the viability of SWE retrievals. Depth hoar layer thickness varied over the shortest horizontal distances, controlled by subnivean vegetation and topography, while variability of total snowpack thickness approximated that of wind slab layers. Mean horizontal correlation lengths were sub-metre for all layers. Depth hoar was consistently ~ 30 % of total depth, and with increasing total depth the proportion of wind slab increased at the expense of the decreasing surface snow layer. Distinct differences were evident between distributions of layer properties; a single median value represented density and SSA of each layer well. Spatial variability in microstructure of depth hoar layers dominated SWE retrieval errors. A depth hoar SSA estimate of around 7 % under the median value was needed to accurately retrieve SWE. In shallow snowpacks
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
10
Citations
NaN
KQI