ATP-sensitive K(+) Channel Inhibition in Rats Decreases Kidney and Skeletal Muscle Blood Flow Without Increasing Sympathetic Nerve Discharge.

2020 
ATP-sensitive K(+) (KATP) channels contribute to exercise-induced hyperemia in skeletal muscle either locally by vascular hyperpolarization or by sympathoinhibition and decreased sympathetic vasoconstriction. However, mean arterial pressure (MAP) regulation via baroreceptors and subsequent efferent activity may confound assessment of vascular versus neural KATP channel function. We hypothesized that systemic KATP channel inhibition via glibenclamide (GLI) would increase MAP without increasing sympathetic nerve discharge (SND). Lumbar and renal nerve SND were measured in anesthetized male rats with intact baroreceptors (n = 12) and sinoaortic denervated (SAD; n = 4) counterparts and blood flow (BF) and vascular conductance (VC) assessed in conscious rats (n = 6). GLI increased MAP (p < 0.05) and transiently decreased HR in intact (p < 0.05), but not SAD rats. Renal (-30%) and lumbar (-40%) DeltaSND decreased in intact but increased in SAD rats ( approximately 40% and 20%; p < 0.05). BF and VC decreased in kidneys and total hindlimb skeletal muscle (p < 0.05). Thus, because KATP inhibition decreases SND, GLI-induced reductions in blood flow cannot result from enhanced sympathetic activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []